¥

ﬁ
k OPTIMAL DECISION IN QUEUEING

}
"
4 by

HOUSHANG SABETI

;
!

\

- .

’ s it LA e N WY

Ap708007

' OPERATIONS I

i 7T e SRR ‘,
CENTER BI'\ s | Lo \"\\
iud o

COLLEGE OF ENGINEERING T E -

UNIVERSITY OF CALIFORNIA

« BERKELEY




L e a e b,
= A e L e 1 [ ey i i R e = i

OPTIMAL DECISION IN QUEUEING

by

Houshang Sabeti
Operations Research Center
University of California, Berkeley

APRIL 1970 ORC 70-12

This research has been partially supported by the Office of Naval
Research under Contract N00014-69-A-0200-1010 and the U. S. Armmy
Research Office-Durham under Contract DA-31-124-AR0-D-331 with the
University of California. Reproduction in whole or in part is
permitted for any purpose of the United States Government.




ACKNOWLEDGEMENTS

My deepest gratitude goes to Professor Sheldon M. Ross
for all his help and encouragement. I am indebted

to the people of Iran for their financial support.
Words are not able to express my feeling to my parents
for their love, understanding and difficulties they
went through during my school years.

T




T

ABSTRACT

A single server queueing system with Poisson arrival
at rate A and a finite queue capacity N 1is considered.
The service can be performed using one of K available
service rates My SHy Seve Sy When service rate i
is in effect the service time is a random variable exponentially
distributed with expected service time l/uk » and a cost rate
c(uk) is incurred. For each customer served, a reward of
A will be earned. The problem is to choose service rate in
order to minimize the expected discounted or expected long
run average cost. We first formulate the problem as a semi-
Markov decision process with the state as the number of
customers in the system. It is then shown that the optimal
policy i1s switchover or reverse switchover depending upon
whether or not the system is profitable. A switchover policy
is a policy which uses higher rates in the higher states and a

reverse switchover policy uses lower rates in the higher states.




TABLE ¢ CUNTENTS

CHAPTER I: INTRODUCTION . . & v s ¢ 4o o o o o o s o o o &

1.1 Description of the Problem . . . . ¢« ¢« ¢ ¢ ¢ o « &
1.2 Review of Literature . . . JAHEFRS o HB K
1.3 Notations and Definitions, Mathematical Background

CHAPTER II1: DISCOUNTED MODEL . . & ¢ ¢ o ¢ o o o o« s « o &

2:1 Intreductdon = « :lslki s o o 5 5 8 ol 5 @ b W > o
2.2 Semi-Markov Decision feor Queueing . . . . . « o .
2.3 Properties of the Optimal Value Function ., . . . .
2.4 Some Properties of Optimal Policy . . . ¢« ¢ ¢ o &

CHAPTER III: AVERAGE COST MODEL, TWO SERVICE RATES . . . .

3.7 TatrodWetioni. % o s 6 o o & o o 2 s ma s o« s B os
3.2 Existence of Stationary Policy . . . ¢« ¢« ¢ ¢ v o« &
3.3 Derivation of Optimal Policy . . « ¢« v ¢ ¢ ¢ « o &
3.4 A Computational Approach . . .+ « « ¢ ¢« v ¢ + ¢ o &
3.5 The Hesitating Customers Problem . . . . « . « . .

CHAPTER 1V: AVERAGE COST MODEL, K SERVICE RATES . . . . .
4.1 Introduction . . o ¢ « ¢ ¢ ¢ o ¢ s ¢ o o o s o o o

4.2 Elimination of Nonoptimal Rates and Derivation
of optimal Policy L] . [ ] L] L] L] L) L] L] . L] L ] L] L] L] L]

REFERENCES . . . . « o e . e ¢ e o o L] . e 8 e & ¢ e o o e o

PAGE

&N -

10
14

22
22
22
23
33
35
40
40
41

55

7Y




Ctv- ' TER T

INTROOUCTION

1.1 Description of Problem

Optimization problems in queueing have received a large amount of
attention during the past few years. Up to a decade ago most of the works
in queueing were concerned about the descriptive aspect of the problem,
namely deriving mathematical characteristics and structure of the system
such as stationary distributions, waiting time distribution, expected number
of people in the system, etc. In almost all branches of industries where
queueing plays a role, in addition to the descriptive models, the manager 1is
confronted with the optimization of design and control of the system. With
the introduction of Markovian decision processes and its relation with
queuveing the optimization of queueing system gained a new momentum,

In a general optimization problem, choosing a policy or value of a
variable in order to minimize a function is sought. In queueing these
variables can enter in the arrival stream or service facility. The iatter
is encountered more in practice and therefore, more attention is given to
these problems, but a number of works can be found which controlling the
arrival process is the target of the optimization. Ja some case even
controlling both arrival and service variables have been the target.

In this thesis we are concerned with the second type of problem. Namely,
the decisions are made on the service facility.

We are considerinrg a queueing system with a single servicing facility
and a limited space N for waiting customers. Those customers who, upon
arrival, find the system with N persons do not stop. The arrival stream
is a Poisson process with rate )\ . The service can be performed with one

of the K existing service rates Wy SHp S eee 20 When service with

'S

rate is used the service time is a random variable which is exponentially




distributed with expected servic. <ime };‘k . Tue terver can switch a
service rate to another at the time of an arrivai or at the time of a departure.
These switches, if made, must optimize the overall expected discounted or

average cost for the given cost structure. 1Ihe cost structure considered is i

as follows,

(2) A service cost rate c(uk) , the cost of servicing at rate W

It is assumed that c(uk) i8 nondecreasing in b
euy) < eluy) <vee < eluy)

(b) The server will receive a revzrd A for each customer he serves.

With this cost structure the optimal policy is found to have a simple form.
If the state of the system is defined as the number of people in the system,

then, e.g., in the case of two rates

B € Mg it will be shown that the

optimal policy prescribes u, wup to a state J ,0<J <N, and Hy for all

1
states higher than J , which we will call a switchover policy. The case of
K > 2 service rates is also analyzed and a simple policy is found.

With the same cost structure the case of "hesitating customers' is also
analyzed, where the arriving customer will stop with a probability Py if
there are 1 person in the system. It is shown that for Py monotone the
same type of policy is optimal.

Although complete results are not found for the expected discounted

model, Chapter II is devoted to this model since some of the results in this

case are needed in the average cost case.

1.2 Review of Literature

As wvas mentioned in the previous section the problem of optimization

in queueing has been given a considerable amount of attention during recent

years.




In the earliest papers assumptions were made about the class of feasible
policies and within this restricted class the best policies were found. For
example in Yadin and Naor (18], they find the optimal queue size at which to
turn the server on assuming that the policy is to turn the server on when
queue length reaches a certain level.

Heyman [ 3] in his work considered the model of Yadin and Naor and
attempted to find the form of an optimal policy in an M/G/1 queue without
making a priori assumptions about the policy.

Thatcher |[17) consideres an M/G/1 queue with two service rates. He does
not assume a queue limit but does assume a holding cost which is dependent
upon the number of customers in the system. He first finds the best switch-
over policy and then h; proves its optimality among all policies,

In general when the form of optimal policy is the target,the theory of
stochastic decision processes plays an important role.

As was mentioned before a decision might be made on arrival, service or
both., Work of Miller ([10], Lippman and Ross [ 8] are of the first catagory.
In Miller the decision is made to reject or to accept an arrival which can
be from one of the n possible types, where the nth type customer offers
a revard Rn . The queueing system he considers is M/M/C, where no queue is
allowved. Lippman and Ross generalize Miller's problem to a general arrival,
service, and reward distributions with an infinite number of arrival types
but only one server. In both cases simple policies are found in order to
maxinize the expected average retumm.

Work of Crabill {2], McGill [ 9] and Mitchell [11) are of the second
catagory where the decisions are made on servizing facility.

Crabill found the optimal servicing rates for an infinite queue. The
system he considers is M/M/1 and the policy he finds is switchover.

McGill considers a multi-channel queue with changing number of servers

as a function of persons in the system.
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Mitchell, in the work still ir pruyrss, considers a single server
queue with Poisson arrivals, where each customer in the system requires a
random length of service which becomes known at the time when customer enters
service. The decision is made as to which of two rates to use.

Klimov in [ 7] considers an m servers queue with nonstationary Poisson
arrivals and nonstationary exponential service. One of the cases considered
there is where the arrival and service rate are not known but must be found
in order to optimize an objective function. The method used is optimal

control.

1.3 Notations and Definitions, Mathematical Background

In the next chapters we will formulate our queuting problem as a semi-
Markov decision process. The early contributers of these processes are
Jewell (6 ) and Howard (4], [ 5] and recently Ross [12], [13]). The notations

and definitions used here are of Ross.

Definition:

A semi-Markov decision process is a process which is observed in each
review point and is found to be in one of a possible number of states. The
set of all possiblz states is called the state spacée S . After observing
the state an action, a , must be maae from a set of possible actions. The

set of all possible actions is called the action space A . Whenever the

state is 1 and action a is chosen, then

(1) A transition to state j occurs with the probability Pij(a) .

(11) If the next state of the system is j , then the time until the
transition from i to Jj 4is a random variable with distribution

F1 (a) .

J
(111) The action a taken in state 1 will specify the cost incurred

in the next stage of the process.
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A policy 1s a rule fcr cioosing actions when the curvent state and the

past history of the orocess is given.
- A stationary policy 1s a nonrandomized policy where the action chosen

at a time only depends on the statc of the process at that time.

Average Cost Results

Let Z(t) be the total cost incurred by time t and Zn be the cost
incurred during the nth ‘ransition interval and T be the length of this

interv... For eac> policy = and state 1 , we define

(1.1) ¢i(1) = 1im E“[E%El %, = 1]

Lo

and

=%

[ n
E 2. /X, =1
Ly

(1.2) 02(1) = 1am —LIZ :
L E"[Z rj/xl-i
3 I

=]

where, xl is the initial state of the system. Although, ¢1 represents
the long-run average expected cost, it turns out that ¢2 is a "nicer"
criteria, in analytical sense, to work with. It also turns out that under

s me reasonable conditions these two criteria are equal.

Let T be the time of the first return to state i , and f any

stationary policy and suppose that

(1.3) E[T/X) = 1) <=,

Then it can be shown (see Rosa [12]) that

) = o3 .




A method to find an optimal stationary policy using ¢2 is given in
{12}, Thus, 1f (1.3) is satisfied then, this same policy is optimal for ¢1
Now, let c(i,a) denote the expzcted cost incurred in a transition

interval that begins with action a being taken in state 1 . Also, let

“ 1(1,a) denote the expected length of such a transition interval. It should
3 be noted that, when the relevant criteria is given by Equation (1.2), then
without loss of generality we may assume that the cost incurred iu such an
interval (and the length of such an Interval) is with probability one

c(4,a)(7(1,a)) . This will be assumed here on.

3 Note that this implies that Va(i) , the minimal total expected a-

discounted cost starting from state 1 , satifies

! (L&) V@) = ot {Eu,a) e teia) gpijmvuu)} : 150

The following theorem may be found in Ross [13].

Theorem:

If c(i,a) is bounded, and if there exists an N < = such that

v, (1) - Vv (0)] <N for all a , all i

then, there exists a bounded function h(i) and a constant g such that

(1.5) h(1) = min {E(i,a) + Z Pij(a)h(j) - gt(1,a) i>0.
a j=0

*
and if is a policy which, for each 1 , prescribes an action which

minimizes the right side of (1.5) then

g = ¢%,(1) = min o2()  all 130.
U u

This theorem will be used in later chapters.
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DiSCOUNTED MODEL

2.1 Introduction s

In this chapter we will formulate the queuelng system as a semi-Markov

decision process. We assume a queueing system with Poissou arrivals at

rate » , and a single exponential service fac'lity. The service facility
can perform its duty using one of the K available service rates,

< g
is a random variable which is exponentially distributed with expected service 1

ul_i uz_: . . When service rate uk is in effect, the scrvice time

time 1/uk . Those arrivals finding system with N persons will not stop

and will be lost. In other words the queueing facility can only hold N

persons at a time, The problem will be formulated in two cases, First, the
operator can only switch at the time of departure of a customer in the system,
Second, where the operator can switch at either am arrival or at a departure
time of a customer. These switches, if made, must minimize the overall expected

a-discounted cost of the system. The following cost structure is considered:

(1) a service cost rate c(uk) , the cost rate incurred when service
rate u  1s in effect. It is assumed that c(uk) is nondecreasing
in uk 3

(11) For each customer served a reward of A will be earned.

In Section 2 the problem will be formulated as a semi-Markov decision
process and in Section 3 some properties of optimal value function defined in
Section 2 will be studied. In Section 4 some special cases will be analyzed
and a sufficient condition for the existance of a simple switchover policy

will be given,




2,2 Semi-Markov Decisicn for Queueing

We must define the state of the system, the available acticns, and the
nrobabilistic law or the law of otion. The state of the system is defi?ed
as the number of customers in the queue. The state space S , is thus a set
of N+ 1 nonnegative integers S = {0,1, ..., N} . The action space K is
defined as a set of K nonnegative integers K = (1,2, ..., K} , where
action k corresponds to rate My

The transition probabilitiea, if cwitching is only allowed at the

departure ponints can be easily found to be as follows:

0 J<i1-1 all {>1
Atua
1 t =0,1, ..., N-i-1 j=1+¢-1 i>1
(+u)
a
(2.1) Pij(a) = = ltua
g E=ON= 1>1
t=N-i (A + 4 )t+1
a
1 J2N 1>1
1 j=1 i=0

If switching 1is allowed in both departure and arrival points then

(0 1d1-1,1+41 431

Ai“ua j=1-1 1>1
P“(a)-< X

T j=14+1 131

\1 1=1 i=0.

When the first set of transition probabilities are in effect then we will

say that we are in Case 1, and similarly for Case 2. Now for Case 1, if




ﬂl

Va(i) is the optima! valus function as defined in Section 3 of the previous

chapter, then

a S
c(u) T N1l ady
Va(i)'min a—A'l'e o 2 ’°—aj+—iva(i+j—1)
a Ya j=0 (A + u‘)
a
T, o Xju
a a
+e “V((N-1 ] T 1=1, ..., N1
$=N-1 (A + 0 ))
(2.3)
o ot
c(u ) u
V_(N) = min 2. -a+e W@N-1)
a a
a a
-8
vV(0) =e ‘v (1)
a a
c@u,)
where, - A 1is the cost incurred in a transition interval of length

a
llu. » the expected transition time when rate L is in effect. 1In other

words, Va(i) is the minimal expected a~discounted cost starting from state
i , where the operator can only switch at departure points. In the case
where switching is allowed at any time (that is, in Case 2) the optimal

value function Va(i) satisfies

[+ ]
°("a) - u A A+

Va(i) = min _X_‘OT—“’. e a X _:_ \./u(i +1)

a a ua

- a
A+ u
a a o v
° + e A + u‘ Vu(i = 1) 1 1, seey h-l
(2.4) ’ "

= cu) T
V(N)-min( & _A+e W @w- .
a a

a a

_a
V() =e Avan) .
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0f course, Va(i) and Va(i) are different.

2.3 Properties of the Optimal Value Function

In this section some properties of the optimal value function Va(i)

will be studied.

Lemma 1:
c(u,)
Va(i) >0 for all 1 , if and only if -> A for ali a .
a
Proof:
The proof is by induction, define
cu,)
(2.5) Va(i,l) = min - A
a a
and recursively
-2 4
c(u)) N-i-1 Ma Au
Va(i,n) = min - A+ z e 341 Vo(i +3-1,n-1)
a |Va =0 (A +u)
(2.6)
a
T w - Ay

+e ‘vu(u -1,n-1) a

g=N-1 (+ I

Functions Va(i,n) will converge to Va(i) as n goes to infinity, see [13].

C(ua)

(1) 1f > A for all a , then clearly Vg(i,l) >0.

a
Now assume Va(i,m) >0 for all m<n-1. Then, by induction assumption
all terms in the right side of (2.6) are nonnegative. Hence, Vu(i.n) >0
for all n , and in the limit Vu(i) >0. .

C(ua)

(11) If Vv (i) > 0 , for all i then > A for all a .
a - =




I

11

C(uk)

Assume the contrary, that i < A for some k , then V(i,l) + € <0
k

for some € > 0 , and using this rate M in all states implies

Va(i,n) <-¢ for all 1 and n , or in tn¢ limit Va(i) < U which contradicts

the assumption.

Q.E.D.
c(uy)
An immediate conclusion of this lemma is 1if ™ <A for some k
then Va(i) <0 for all 1.
Lemma 2:
c(u,)

< A for some a .

Va(i) is nonincreasing 1if and only 1f
a

Proof:

We prove this lemma by induction as of the previous lemma.

C(u.)

(1) 1f < A then V“(i) is nonincreasing.

From Equation (2.5)
Va(i,l) - Va(i +1,1) for all { >1

and

1.1
At

-Q
(%)
V,(0,1) = e */va,1)

C(u‘)

®
where, v, is the rate which minimizes { - A} « By assumption
a

V(1,1) <0 . Hence, Va(O,l) >V(1,1) = v(1,1) 1 > 1 and the lemma is

true for n=1 . Now assume the lemma is true for all m <n-1, then
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- 3
C(ua) My N-i-l Aty e . -
V (i,n) = min -A+e —— i+3-1,n-
@ a Ya j=0 (A + u.)jﬂ' a
(2.7)
a .
T w - Ay
+e N (N-1,n-1) A i
¢ J=N-1 (A +u)
-8 3
clv)) u_ N-i-2 ey
V({d+1,n) =min 2 _A+e ' ) —— g Y+ dan - 1)
@ a a 3=0 (A +u)
(2.8)
a
T o XJM

u
+e aV(N-l,n-—l) __‘—?;I'
j=N-1-1 () + ua)

For any fixed a , the right side of (2.7) is larger than the right side of
(2.8) by induction assumption. Hence,
Va(i,n) > Vo(i + 1,n) for all n and .

and in the limit Vo(i) > V“(i +1) .
cu)

(11) If Vu(:l) < Va(:l + 1) then > A forall a.

a
C(uk)

If not let k be an action such that m <A, Then V(i,n) <O ,
k

and by part (1) of the proof Va(:l. +1) < Vu(i) is a contradiction.

Lemma 3:
elu))
Va(i) is nondecreasing if and only if > A for all a.
a

Proof:

Proof of this lemma is similar to the previous pne, and is omitted

here.
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Remark:

Lemmas 1, 2, and 3 can be proved for functions Va(i) . The proof 1is

similar to those lemmas and is omitted here.
The following lemma will be useful in the next chapter.

Lemma 4:

(a) There exists an M < » such that

|vc(1) - VQ(O)l <M for all a , and all 1 .

(b) There exists an M < = such that
I\’/u(i) - \70(0)| <M for all a , and all {1 .

Proof:

(a) Let (rl, Tl tN) be the optimal service rates used in states
(1, ..., N) then the embeded Markov chain corresponding to departure points

is irreducible and positive recurrent, see (2.1). Let K1 be the expected

number of transition starting from state 1 before reaching state 0 , then

K, <= for all 1 . Let K =maxK, , for the case Va(i) <0
i

C(“a)
Vu(i) > K min - A+ V_(0)

a a

' {C(ua)
V(1) -V (0) > Knin - A} c
a a - m
a a

The left side of the above inequality is also bounded by O . Hence

c(u))
min [ ISR A}
u

a a

lv,(1) - v (] <k
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; for the case Va(i) >0

{C(“a) }
V (1) - V (0) < K uax - A
a a - u
a a

or

i
c(u))
|va(1) - V. (0| <K max —— - Ap .
a a

| Now let
j elu) cu,)
i M = max {K|min - A]l ;5 K max { - A
! a Ha a Ha

then

(2.9) I"u“) - va(0)| <M.

(b) The proof of this part is similar to the first part using the
transition probabilities (2.2), and arguing in the same way.

Q.E.D.

2.4 Some Properties of Optimal Policy

In this section some special cases will be analyzed and a conditional
theorem for the existance of a switchover policy will be given., We define
*
f (1) to be the optimal action at state 1 . The following lemmas and

theorems are proved for Case 1.

Lemma 5:

C(ua)

* *
If £f (N) =k and A > for some a , then f (1) < k for all
a

i <N, in other words the largest rate is used in the largest state.




e A5 T ], T
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Proof:

By assumption

c(u,) p
kK _at+e S (N-1 <
uk a ua

"
u

ce(u )
o ‘va(u-l) all a¢ k.

Let g(i,a,k) be the difference between two expected future costs when

action a or k 1is taken in 1 , then

a a

c(u) clu) ( m u )
(2.10) g(N,a,k) = —2 - —K 4 \e 2_ . Klyn-1 .
lJa Uk

By assumption g(N,a,k) > 0 for all a ¥ k . Assume in the contrary that

*
there exists state 1 such that f (i) = a > k then

3 - .8 3 PG
c(u') c(uk) N-i-1 A Vo A
- +

g(i,a,k) = —_——— =
a My 320 |+ )32 O+

(2.12) vad+g-nD+vw-1) | |—A—

a
J Ay =
Mgy

- e
j+l
(A + )

-4 -2

Ya v
where g(i,a,k) <0 . In (2.10) substitute for e and e the
following:
- B

m

a

- — j ) P a— — =25 J
1] ® Ay © A

e - e .

s e S
3=0 (1 + u.)j+1 3=0 (1 + uk)j“l

i en
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then
a a
N-i-1 Ay T u *J“k i ;;
g(1,a,k) - g(N,a,k) = T s 341 © s 41 © g
=0 | (x4 ) A+ w)
(2.13)

Va+3-1-v®-D].

For nonincreasing Va(i) . Va(i +3-1) - VQ(N - 1) 1is nonincreasing and

nonnegative. And the function h(j) defined as

] - 3 -8
’ ATy M Au u
a a k k
h(j) = j+1e -_—F.l_e a>k
\+ ua) (\+ ”k)

changes sign from positive to negative (note that, function

%la

ij i
o+ x)dtt

and decreasing for j > J) and since

S(x) = is increasing for j <J , some J , 0 <J <N,

- VR
£ L U
] h(j) = e 2_e k50

3=0

then the positive terms in (2.13) dominate the negative terms. Hence,

v
o

g(i,a,k) - g(N,a,k) 2

v
o

g(i,a,k) > g(N,a,k) >

*
vhich contradicts the assumption that f (i) = a .

Q.E.D.

Lemma 6:

Let there exist an I such that the action space K = (1,2, ..., K}

can be partitioned into two subsets Kl = (1,2, ..., I} and
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clu,))
K, = {I+1, ..., K} where, for all ace K, » <A and for all a e K,
a
c(ua)
7 > A . Then, the optimal policy does not include any action from K2 S
a
Proof: )

*
From Lemma 5 if f (N) = a and a € Kl then optimal policy does not

#
include elements of Kz . Let us assume f (N) = a and a ¢ K2 then

e
C(“a) U

a
(2.14) V“(N) = ~-A+te Va(N - 1)

a

substract Va(N - 1) from both sides of (2.14)

a
c(u,) ( My
(2.15) Vu(N) - VG(N -1) = o - A+ \e - 1Jv(N - 1) .
a
c(u,)
By Lemma 2 VG(N) - VG(N - 1) <0 and by assumption - A >0, since
a

-2
u
e %*-1¢<0 y V(N - 1) <0 then, (2.15) is impossible. Therefore, a

cannot be an element of Kz .

Q.E.D.

Theorem 1:

* ®
If N=2 then £ (1) < f (2) , i.e., the optimal policy is switchover.

Proof:

The proof immediately follows from Lemma 5.

Theorem 2:

C(ua)

If N=3 and uK <A, and < A for some a , then the optimal
a

policy 1s switchover, i.e.,

A B o

.

~
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* * *
£(1) <£@ <fQ.

Proof:

* * * *
By Lemma 5 f (1) < f (3) and f (2) < f (3) . We only need to show
* *
£ (1) <£(2) .

*
Assume f (1) = k , then for any a <k

a a’
clu,)  cu) n T " R
k a k k a a
g(l,k,a) uk - i + T ™ e = ™ e VG(O)
. . &
Ay U Au u
k a a
tl—7Fe “-—2=e *h
(A+uk) (A+yu)
a
a a
3 Sl 3 Sl
® ATy v A%n v
+ V(2) —_kj-ﬁe k-——a-j—;fe 8
J=2 | (v +w) A+ )

By assumption g(l,k,a) <0 . We now show that g(2,k,a) < g(l,k,a) <0

- 2 - e
p u ¥ "
k k a a

8(2,k,a) At oug & T+ € Va(l)
a
el - 2
Ay u Au u
tl—tmge o2 h @
O+ uk) (+ ua)
4 -2 - 2
® ATy ] AT u

L 3+ ¢ - J+1 ©
=2 [+ O+ u)
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. N
' ol U U v
k k a a
8(2'k:a) - g(l»k:a) = ;\—-":—U—; e - 'A s ua e [Vu(l) - Va(o)]
N -
Au ¥ Ay ¥
t|l—E—5e k-———“—;e v - v )
. (A + uy) A+ )
L since V(1) < V(0) and V(2) < V(1) and
- e S
H u H '}
- +k ¢ k : +a 4 a, 0
i Mo
- - g
Ay u Ay ¥
B S S
O+ ) O+ )

by assumption. Hence,

g(2,k,a) - g(1,k,a) <0 .

<

Therefore, 1f action k 1is better than action a 1in state 1 (for k > a) ,
then action k is better than action a in state 2 .

Q.E.D.

. Theorem 3:

|
E-

C(u.)

Asgume K = 2 and A > for at least one a , and Vc(i +1- Vc(i)

a
is nondecreasing in 1 , then switchover policy is optimal. That is, there

exists a :.ate J , 0 <J < N, such that

]
£(1) =1 for 1 <J

. .
£ (1) =2 for 1 >J .

Proof:

- *
Assune 1 1s a state such that f (1) = 2 , then




Va(N -1) .
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(u,) 3 "
clu, N-1-1 Ay, Wy
- A+ e VAd+3-1+
Y2 jZO \ + uz)j+1 a !
y -
® Ay u c(u,)
+ ) zj+le 2vg(n-1)< Lo as
3=N-1 (A + uy) ¥
a
N-i-1 Xjul - ;I' © Xjul - ﬁi
—pe VU +i-D+ ) i V- D
30 O+ ) J=N-1 (A + ) @
or
a [+]
c,) c(uy) N-1-1] a3 T A3 T
(1,2,1) = —2 _ S0 G e ) s SN |
3 ¥ 350 | O +up? o+ uptt
| 3 - 3
| L A A
f VA+3-1)+ 2 b2 e V2 - g e
! a 1+1 341
J=N-1 | () + uz) () + ul)
VG(N -1) <0,
We now show that g(i + 1,2,1) < 0 which implies f*(i +1)=2,
= a
clw,) c(u,) N-1-2] . it
g1 +1,2,1) = u 29s 1 + Y2 ol Y2 - .! e
2 "1 0 1O+ uz)“1 (\+ ul)'1+1
[y - = 3
- Ay u Ay,
2 2 1
arn+ I FTe - ——ge
J=N-1-1 _(A + uz) (\+ DY




4 ]
N % 1 A u2 uz

g(i +1,2,1) - g(1,2,1) =

e
150 [0 +upI*

(2.16)

Now, since

Qa Q
"J“z ) My AJ“l i L]
h(j) = ——'———1_‘—1 e - ————T’_—l- e
O+ "2)‘ \+ ul)

changes sign from positive to negative, Z h(j) >0, and V
3=0

Vu(i + 3 - 1) <0 then the negative terms in the right side o

the positive terms. Hence

8(1 + 1)2’1) = 8(1’2’1) io

g1 +1,2,1) < g(4,2,1) <0

*
or £ (1+1) =2,

LA+ -

f (2.16) dominates

Q.E.D.
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CHAPTER 111

AVERAGE COST MODEL, TWO SERVICE RATES

3.1 Introduction

In this chapter we will consider the same queueing system with the
same cost structure, but the criterion for decision rules will be to minimize
the long run expected average cost. We assume that only two service rates
Hy < M, are available and the service rate can be switched either at an
arrival or departure epoch during the process. When service rate Ma is in
effect, the.service time is a random variable which is exponentially distributed
: with mean 1/ua . We will use methods of Ross as stated in the last chapter

to find the form of optimal policy.

In Section 2 the existence of stationary policy will be proved, and in

Section 3 the form of the optimal stationary policy will be found. An
efficient computational method will be given in Section 4. 1In Section 5
the problem of "hesitating customers,'" who join the queue with certain

probability, is analyzed and simple optimal policy is found.

3.2 Existence of Stationary Policy

We use the method of semi-Markov decision processes to analyze the
queueing problem., The state of the system, as in Chapter II, will be the
number of customers in the system and the action space is8 K = (1,2} . The
transition probabilities are the same as those given in (2.2).

As was stated in Chapter I, under the following three conditions there

exists an optimal stationary policy.

(1) c(i,a) , the expected cost during a transition interval, is
bounded.
(11) |Va(1) - VG(O)l <M forall 1 and a and for some M < » ,

Va(i) are as defined in Chapter II.
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(111) Ef[T/X] = 1) <« - _ where T 1s the time of the first return to
state 1 , Xl is the initial state of the svster, cnd f s

i a stationary policy.

| The optimal stationary policy can be found from the optimality conditions
stated in Chapter I, and will be discussed later in this section. Under
conditions (i), (ii), and (iii) this optimal policy will minimize @1(1) .
the expected long run average cost starting from state 1 , as defined in

Chapter 1.

Lemma 1:

Conditions (i), (ii) and (iii) hold for the queueing problem,

Proof:

The proof of (i) is immediate. (i1i) was proved in Chapter Il (Lemma 4).
Since the chain, defined in part b of Lemma 4, Chapter 1I, is irreducible
and positive recurrent then the number of transitions before the first
return to 1 1is bounded for all 1 , and so is the expected time of each

transition. Hence (ii1i) holds.

' 3.3 Derivation of Optimal Policy

In this section we first modify the optimality conditions for the
queueing system, and then the form of optimal pclicy will be derived.

The optimal stationary policy is one which prescribes the minimizing
action in the following equations.

h(i) = min {E(i,a) + 2 P1

J(a)h(J) - g?(i,a))
a 3 ‘

(a) were defined in (2.2) and

Py
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c(0,a) = 0
u c(u )
E(i,a)-“f“ ’ a -A} 1 =1, ..., N
Mal Va
?(o..)-%
1(i,a) = 5 1=1 N
) A+u‘ 1 ] »
Hence,
h(o) = nh1) - &
c(u) - uA M |
h(i) = min a 8 4+ 2 b+ +—2—hi-1) - B
.{ X+, X+ T N
(3.1)
{1=1, ..., N-1
c(u) -uA M '
h(N) = min {—2 2 4% y(N-1) +——nm - B |
.{ A+u. x+u. A+u. A+ua‘

(3.1) can be written as follows:

g8 = A[h(1) - h(0)]

c(u ) -uA Lo
min { : 2 4 A (h(1 +1) - h(1)] - .A"'_.u (h(1) - h(1 - 1))

a l+u. A+u. A
-T!T}-O i=1, ..., N-1
a
c(u.) - UA (N
min - (h(N) - h(N - 1)) -4 _tYa.p
i A+ u. A+ u. A+ u.

or
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Lemma 2:
c(ug) c(uy) c(u,)
(a) If A > and = min , then the optimal policy
g Hx aeK a
is to use Mg in all states, where Hy SHp S eee Sl o
c (i) cluy) c(u,)
(b) If A < and = min , then the optimal policy ol
- ¥ ]
1 1 a a
is to use M1 in all states.
Proof: .
Let {Bi}: £ be the stationary probabilities of the queueing system, F
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g = A[h(1) - h(0}]

1 i = = — =
ey m:n {eu) -wA+A[bd +1) - h(1)] - u,[h(1) - h(d 1)] -g}l=0 ‘
1 =1, .., N-1 .
1 -
ey m:n {c(ua) - WA - ua[h(N) -h(N-1)] -g}l=0.

Finally, since R 0 for all a , (3.1) is equivalent to:

a

(g = Alh(1) - h(0)]
g =min {c@u ) - u A+ A[h(d + 1) - h(D)] - [h(1) - h{H - D]}
a
(3.2) ¢

\g = m:n feGu) - WA = u (h(N) - h(N - 11} .

Derivations:

The following lemma is proved using the stationary probabilities for
the M/M/1 queueing system without any use of semi-Markov decision process.
The lemma is true for any K > 2 and gives the form of optimal policy in

two special cases.

where 81 is the proportion of the time that the system spends in state 1{

e




26

Let (rl,rz, SRlegs rN) be the set of service rates used in states (1,2, ..., N)

where r,eus- [ul, T uK] then

A

81 ry 80
An
B = 8 n=1,2, ..., N
n r1r2 ? e pemE_n0
Bn =0 n>N
1

B, = .
0 2 N

1+J_+_A'-+ oou+ r X r

rl rlrz rlzl..‘l N

We first show that B8 the proportion of the time that system spends in

N ’

state N , is decreasing in each ry .

XN
B - rlrz e % 00y rN
N N AN
1+—+ 50007
r r,r evsees I

1°2

Treating ri's as continuous variables we have

N N
SBN i} tl 5 0KkI0D ri-lriri+1 Telalsls rN 1 1l N 3
ari 2
A AN
1 +r_+ LN N +ﬁ
1 1 [N I N N ] N
AN [ .t AN
2 lF T, o 0P * P ctom b
tl sesee ri_lriri+1 R rN 1 i 1 N

A XN -
1+_+ se e +——'——-—‘
rl rl LB Y ) I'N




|
N i-1
= ; F.+ fL-+ - 2 - ]
aBN . tl e® v e o ri_lrir1+l ) I‘N 1 .l. 1—1 < 0
or 2
! A AN
1 +.—+ LA 4 +—__ L]
r, Ty coeer Ty
i=1,2, ..., N,
Hence, BN is maximized it L Y for all 1 , and minimized if Ty Ty

for all 1 .
Let Ae be the cffective departure rate or long run average departure
rate, then Ae = \(1 - BN) . Since c(ri) is the cost rate when r is

used then

i
B.c(r,)
FEIRE !

is the average service cost rate. The average return rate will be:

N
G=21(1~-B8))A - B,c(r,) .
N 121 1S5

N
Let g » max G = max A(l - BN)A - 121 81C(r1) .
Tiaeeeaty
p ticu
N c(ri)
(a) g = max A(l - BN)A - Z Bir1
r
rl....,rN i=] i
T, eu
cluy) N '
R < max A(1l - BN)A - Bir1 .
Fiaeseoly 'S T ‘
r cu
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N

Now since 2 Bir1 is the long run avrtvage service rate or the effective
i=1

service rate, then

] 8r,. =2(1-28).
e L N

Hence,

[ c(uK)
(3.3) g < max A1 - RYTA - B
Tr r i L uK
1....’N
r eu

C(uK)

u
K
if BN is minimized. BN is minimized 1if r1 = uK

for this choice of rates the right side of (3.3) is maximum, but for the

But by assumption A - > 0 then, the right side of (3.3) is maximized

for all 1 . Therefore,

same choice of rates we will have equality in (3.3).

Q.E.D.

N
(b) e max AQ1 - BN)A - Z Bic(ri)
i=1

tl’...’rN
T eu
( s C(ul) g
< max A(l - BLA - B, r
Tysemty : b} a3 P
T, cu
by assumption or
°("1)
(3.4) g < max A(l - BN) A - .
e ]
rl.to.‘rn 1

titu

i
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1
c(u,) |
Since A - ” < 0 then the right side of (3.4) is maxiwized 1if BN is
1
maximized, but BN is maximized if Ty for all 1 , and for this
1
choice of rates we have equality in (3.4). i
Q.E.D.
Lemma 3:
c(uy) - cluy) 1
Let R = - A . Then, the optimal policy is to use in
My iy 1
state 1 1f and only if
(3.5) h(i) - h(i - 1) <R .
Proof:
* *
Let f (1) be the optimal action when in state i , then f (i) =1
if and only if
C(ul) - WA+ [h(d + 1) - h(1)] - ul[h(i) -h(1 - 1] <
(3.6)
C(uz) - uoA 4+ Afh(d + 1) - h(1)] - uzlh(i) - h(i - 1]
or
4
1
cluy) - c(u)
h(1) - h(1 - 1) < - - A,
M2 7 W)
Q.E.D.
Theorem 1:
C(ua)
If A> T for at least one of the rates, then there exists a

a
state J , 0 <J < N, such that

®
f(i)-l 1-1’2~ LICEC I J-l

*
f (1) =2 i=J3JJ+1, ..., N.

That 1is, the optimal policy is switchover.

e
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Proof:

* *
Let k be the smallest state such that f (k) = 2 and f (k-1) = 1.

We consider two cases:

Case 1:

k = 1 , then
(3.7) h(0) = h(1) - &
(3.8) g = A[h(1) - h(0)] > AR

[
(]

*
by Lemma 3. For state 1 , since £ (1)

g = C(uz) - HAt Afh(2) - h(1)] - uzlh(l) - h(0)]

(3.9)
R .

g < C(uz) - WA + A[0(2) - h(D)] -y,

From (3.8) and (3.9)

AR < c(iy) = kA + A[R(2) - h(D)] - u,R |
or
(3.10) AR + R - c(uz) + uoA < A[h(2) - h(1)] .
cuy)  cluy)
Now for T < we have u2R - c(uz) + uzA > 0 since

1 2

C(uz) - C(ul)

WR - c(uz) + A = u, = BA - c(uz) + uoA

Ha s My

My = ¥y 2 Wy = ¥y 1 :

- ;;—%—;I[uIC(uz) - uye(u)] 2 0.

-
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Hence, from (3.10)
h(2) - h(1) > R

* *
or by Lemma 3, f (2) = 2 . Continuing in this manner we can show f (i) = 2
cluy)  cly,)
for 1 = 3,4, ..., N . But for < by Lemma 2(a) we know u, is
¥, Y1 2
optimal in all states. This completes the rroof for Case 1.

Case 2:

k > 2 . By Lemma 3

h(k - 1) - h(k - 2) <R 'k - 1) =1
(3.11) R
h(k) - h(k - 1) > R £ ) =2

and for state k and k -1,

g = c(u,) A+ [h(k) - h(k = 1] -y [h(k = 1) = h(k - 2)]

Y1

g = cluy) A+ Alh(k + 1) - h(k)) - u,[h(k) - h(k - 1)]

H2
or by (3.11)

g > c(ul) - ulA + AR - ulR

g < cly) - Hoh = W R + Afh(k + 1) - h(k)] .

Then,

c(ul) - ulA + AR - MR < c(uz) - uzA - uzk + Alh(k + 1) - h(k)]

or

Alh(k + 1) - h(k)) < C(ul) - C(uz) - (u1 - uz)A + (u2 - ”1)R + AR .

But




(u JR - 7~ N ST (uZ - wl)R .

YIS I
Hence,
ik + 1) - bik) - K

* .
or f (k +1)=2. Continuing fn the sane manner we can show t ({; = ¢

for i =k+ 2, ..., N which caorpletes thie proof of the theocen

Lheorem 2:

C(ud)
If A<-—--— tor a = |
a
U <J <N, such that

2 . Then, there exists a state J ,

*
t (1) =2 for 1 =1, ..., J1

%
t (1) =1 for 1 =J,J+1, ..., N .
That 1is, the optimal policy is a reverse switchover.

Proof:

The proof is similar to the proof of Theorem 1. Let k be the smallest

* *
state such that f (k) =1 and f (k - 1) = 2 , consider two cases:

Case 1:

k=1,f() =1 and
h(D) - h(0) <R .
For state 0 ,
(3.12) g = A[h(1) - h(0)] < AR .

For state 1 ,
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g =clu) -wA+ A[h(2) - h(D)] - ullh(l) - h(0)]

(3.13)
g 2 c(u) - uA+ A[h(2) - h(D)] - W R .

From (3.12) and (3.13)

c(uy) - ;A +2[h(2) - h(1)] - wR < AR

(3.14)
Ah(2) - h(1)] < AR+ wR - c(u)) + wA .

But

C(uz) - C(ul)

ulk - C(“l) + ulA il Y - ulA - c(ul) + ulA

\12 = ul
1 C(ul) c(uy)
= ———(u,clu,)) - uyeuy)] <0 if >
My ul 1772 2 1 ul My
Then (3.14) reduces to
h(2) - h(1) <R
* *
or f (2) =1 . Continuing in the same manner we can show f (1) = 1 for
cuy) el
1 =34, ..., N, If " < 3 then by Lemma 2(b) the optimal policy
1 2

is to use ¥ in all states, which completes the proof of Case 1.

Case 2:

The proof is similar to the proof of Case 2, Theorem 1 and details are

omitted here.

3.4 A Computational Approach

In the last section we proved that the optimal policy has a simple form.
c(u))
a

It uses (in the case A > for some a) u, up to a state J -1 and
a

then 1t is switched to rate My - We give a simple computation method to find

J .
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Let P, be the proportion of time the system spends using rate My in

1
a given switchover policy. Since the cost rate is c(ul) = ulA and

c(uz) - u2A for rates My and My respectively then

where g is the average rate of return as defined before. Now let Pi be
the proportion of time that the system spends using Hy where state j 1s

the switching state, then

-1
] ]
Py = B
1 121 1

where Bi are the stationary probability for this given policy

! i
: h I WS g
By 1 o 1i<3-1
4

-1
h D S -
By = Jr1 1341 %o 1> £m 1, siiy N
SR
.
B1 0 i>N
s 8 - 1 :
‘ ’ L 2 o +"J-1+ A + +————XN'
ul LI ) j-l j"l e j-l N"J+1
¥l ¥ Y, ¥] ¥

We first compute

1.2 N
Pl.Pl. .Il. Pl L]

Now 1if
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then in (3.13) we take Pl as large as possible, and J 1is found from

Pi = m;x {Pi} .

And if

c(ul) - WA C(uz) - uzA

then the optimal J 1is found from

Pi = m;n {Pi} .

c(u)
The same method can be used in the case A < y 2 , a=1,2 , except
a

the switching is from rate to rate u

) 1

3.5 The Hesitating Customers Problem

In this section we assume that the arrival rate depends on the state of

the system, It is assumed the arrival rate is APi when the system is in

state {1 , where 0 :-Pi <1 . In other words an arriving customer will

join the queue with a probability P, whenever the system is in state 1 .

i
The same cost structure is considered and the service facility will be the
same as in the last sections. Let H(i) be the relative cost value corresponding

to state 1 , equivalent to h(i) in the last sections, then the optimal

stationary policy could be found from the following set of equations:

(8 = ABg[H(1) - H(O)]

g = min {c(u) - w A+ 2P [HU +1) - B(D)] - [HH) - HU - D]}
(3.16) {

1 - 1, ce ey N-l

g ~min {c(u)) - u A= u [HN) - H(N - D]} .
a
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With this definition of relative cost functions one can state the equivalent

of Lemma 3 as follows:

Lemma 3': .

cuy) = clyy) *
Let R = - A then f (i) = 1 1if and only if

Fal )

H(1) - B(1 - 1) <R .

The proof is immediate.

Lemma 4:

c(u)

for some a and H(0) = 0 , then H(i) 1is nonincreasing

If A >
a
as a function of 1 .

Proof:
(3.17) g = APO(H(I) - R(0)) = APOH(I) 5
clu,)
But A > then, g <0 and H(l) <0 . Now it can easily be shown that
a

Vu(i) as defined in Chapter II is nonincreasing for the hesitating customers
problem and since H(1i) has the same structural forum as Va(i) (see Ross [13))

then H!{) will be nonincreasing.

Q.E.D.

Theorem 3:

clu))
If the Pi" are increasing in {1 and 2_ <A for at least one a
a
W) clu,)
and " < " » then the switchover policy is optimal for the hesitating
1 2

customers problem, J
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Proof:

* #
Let k be the smallest state such that f (k) =2 and f (k - 1) =1,

we prove the theorem in two cases as we did in the proof of Theorem 1.

Case 1:

k = 1 L]

(3.18) g = APy[H(1) - h(0)] > AP R

by Lemma 3'. Note that since g <0 then R < 0 . For state 1

g8~ C(uz) - At XPIIH(Z) - HQ1)]) - uzlﬂ(l) - H(0))

(3.19)
< c(uz) - uzA + AP1[H(2) - HQ1)]) - qu .

From (3.18) and (3.19) we have

c(uz) = uzA + XPI[H(Z) - H(1)] - uZR > XPOR

or

(3.20) API[H(Z) - H(D)]) > APOR + u2R - c(uz) + uzA .
But by assumption

u
2
o + - —— - - -
WoR = eluy)) + uA uz-ullc(“z) cuyd] - uph = cluy) + uA

1 ,
iy - ulluIC(uz) = ueu)d] > 0.

Hence, (3.20) reduces to

.

H(2) - H(1) > 2R > R .

[
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P0 *
Yince R < 0 and P2 1 ,o0r f (2) =2 . Continuing in the same way it

1

*

can be shown f (1) =2 for all 1 > 2.

Case 2:
k > 2 , then
H(k - 1) - H(k - 2) <R
H(k) - H(k) > R
and R <0 .

For state k -1 and k we have

+

g = cluy)) - uA+ P AHK) - H(k - D] -y, [Hk - 1) - H(k - 2)]

+

g8 = c(uy)) = wyA + PA[H(k + 1) - H(K)] - uy(H(k) - H(k - 1))

or by (3.21)

g>c(u1) A+P XR-uIR

Y1 k-1
g8 < cluy) - upA + AP [H(k + 1) - H(K)] - u,R
or

R-ulk

c(uz) - uzA + XPk[H(k +1) - H(k)]) - uzk > c(ul) - ulA + XPk_l

or

AP [H(k + 1) - H(k)] > AP, _,R
Pe-1
H(k + 1) - H(k) > P R>R.
k
P-1 .
Since R <0 and P = 1 . Therefore, f (k+ 1) = 2 . Continuing in
k

*
the same manner it can be shown f (1) = 2 for all 1 >k + 1 .

QoEoDo
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e(u)
for a=1,2 . Then Lemma 3' still

Now, let us assume that A <
a
hold. Equivalent of Lemma 4 can be stated as follows and the proof is

similar to the proof of Lemma 4.

Lemma 4°':
c(u)
If A < for a=1,2 , then H(1) 1is nondecreasing.
a
Theorem 4:

C(ua)

If the Pi's are increasing in 1 , A < for a=1,2 , and

a8
C(”z) C(ul)

< , then the optimal policy for the hesitating customers problem

l»lz Ul

is reverse switchover. Proof of this theorem is similar to the proof of

Theorems 2 and 3. Details are omitted here.
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CHAPTER 1V
AVERAGE COST MODEL, K SERVICE RATES
4.1 Introduction 5

In this chapter the results of Chapter III will be generalized for the

The cost structure is the same, i.e.,

K service rates, SU, < vee <

M1 =¥ =W
c(uk) is the cost rate of using service rate He ° It is assumed that c(*)
is a nondecreasing function. A reward of A 1is earned for each customer
served. Again the method of semi-Markov decision processes is employed in
order to minimize the long run expected average cost. The state of the system
is the number of customers in the system and the action space is
K= (1,2, ..., K} . The arrival stream as before is the Poisson process with
rate A and the service time is exponentially distributed with expected
service time 1/uk whenever rate My is in effect. The results of Section 2,
Chapter III for the existence of optimal stationary policy are true for K
rates case and will not be repeated here. The modifications of optimality
conditions which were made in the two rates case will still hold and will be
stated below.

If n* is the policy which prescribes the minimizing actions in the

foliowing relations, then this policy is stationary and minimizes the long

run expected average cost.

g = A{h(1) - h(0)]

g = min (c(ua) - uaA + Afh(i + 1) - h(1)] - u.[h(i) - h{i - 1))}

(4.1) .CK
1 = 1.2. ss ey N-l

g = :t; {e(u) - uA = u [h(¥) - h(N - 1)]}

In the next section we will first eliminate some of the service rate from
further considerations because they will not appear in the optimal policy, and

then the form of optimal policy will be derived.
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4.2 Elimination of lonoptimal Rates and Derivations

of Optimal Policy

In Chapter III, Lemma 2, we showed in certain cases some service rates

will not be used in the optimal policy. For example if the function c(?)
clu )
a

for some a , then the optimal policy is to use

is concave and A >
a

rate the fastest rate, in all states. Lemma 2 is in fact more general

Mg
than this. If the service rates are such that the points (uk,c(uk)) all
lie above the line connecting origin and point (uK,c(uK)) then, only g
will be used in the optimal policy. We now in a sequence of five lemmas
eliminate some nonoptimal rates.

Let C be the set of all points (uk.c(uk)) , and consider the piece-
wise linear convex function H Jjoining (ul,c(ul)) and (uK,c(uK)) which

bounds the set C from below and changes slope only at the points of the

set (see Figure 1).

cw) P — = - == = -

c(uk) ------------ e |

c(“z)

c(ul)

Ul Uz H

FIGURE 1: SET C OF POINTS (uj,c(uj)) AND FUNCTION H




Lemma 1:

The set of service rates corresponding to the points (uk,c(uk)) not
on the function H (above H) will not be used in the optimal policy and

can be eliminated.

Proof:

*
f (1) =k , i.e., rate is optimal in state 1 1if,

Yk

cu) - wA+ A+ 1) - h(1)] =y [h{d) - h{ - D] <

(4.2)
c(uj) = ujA + A[h(i + 1) - h(1)] - uj[h(i) - h(1 - 1)) for all j # k
or
clu) = wA - clu) +uh < (o - uj)[h(i) -h(i-1)) for 34k
or
e(u) - C(uj)
h{i) - h{(1 - 1) > b - "j - A 1if My > uj
(4.3)
c(uj) - cu)
h(i) - h(1 - 1) < "j =" - A If "j > Wy .

(4.3) can be stated as follows

cu,) - c(u,)
‘ k S -A)<h(l) -h(1 -1) <

max ) -
0=1,2,....k-1 | Mk ¥y

" $C(uj) - c(uk)
d=k+l1,... K l My T M

(4.4)

- A .

Now assume that (uk,c(uk)) is above H , and let Mo be the largest rate
to the left of My “here (um,c(um)) is on H and v be the smallest rate

to the right ¢f M and (un,c(un)) on H (see Figure 2).
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C(un)

c(uk)

u{um]

FIGURE 2

Then from definition of H

c(uk) - C(um) . c(un) - C(uk)
Yk T ¥nm a7 Mk

or

c(u,)
- "A> = k-AQ
Uk Um u uk

c(uk) - c(um)

(¢]
~
=
2
A d
'

®
But this violates (4.4). Therefore, f (1) = k 1s not possible and Mk will
not be optimal in any state and can be eliminated. Now let

< < ... < be those rates such that the corresponding (u,c(u))

Y1 T ¥ Fp

points are on H . (Rearrange the indexes so that this is true.) Then,

c(uy) = clu)) ) c(uq) - cluy) cu) = ey )

A< -A<|-o< -Ao
- u

(4.5) -
Py s ) Mg~ Wy ML MR




We define

c(uy) - clu, )
(4.6) R, - 1 =l A
h j-1

Lemma 2:

f*(i) = § 4if and only if

(4.7) sl = LSRN T RS S SUigin) - P _ g
. My 7 ¥y LS W
or
Ry <h(1) - h(i -1 <Ry, .
The proof of this lemma is immediate from (4., d (4.5).

The following two lemmas are needed to prove Lemma 5 and Theorem 1.

Lemma 3:

Let (rl. 3% oF rN) be the optimal rates in states (1,2, ..., N) for
a given cost function c(ul)'i .o :.c(uL) , and assume rate e is not used
in the optimal policy. Now let us consider a new problem with the same

structure but a different cost function c¢'(s) , where

c'(ui) = cu,) 1d¢
C'(ut) > C(ut) 5

Then e is not used in the optimal policy for the new problem.

Proof:

The lemma 1is intuitively clear since 1ncreasing.the cost of a nonoptimal

rate should not change the optimal policy. Formally, let B8, be the stationary

i
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probability, the proportion of time the system spends in state 1 , as
defined in Chapter Jil, then

N

g = L Byc(r;) - A1 - BYA

i=1
where g is the minimal average cost rate, and (rl,rz, oy rN) are the
set of optimal service rates. Now assume that a different set of rates
(ri,ré, % r&) are optimal for the new problem and Bi's are the

corresponding stationary probabilities. Then 1if My is used in the optimal

policy in state j , g' the optimal cost rate for the new problem is
N
' o= Yale') o - a!
8 121 Bic(ri) A(l BN)A <g .

(g 1s an upper bound since (rl,rz, oKera 3 rN) can be used for the new

problem which gives the cost rate equal to g .) Then

g' = 1;3 Bic(ri) + Bjc'(ut) - (1 - B&)A
(4.8)
> 121 Bic(r)) + Bjc(ut) - A1 - BYA .

But the right side of (4.8) is the cost rate using the original cost function
and gives lower cost rate than g , which contradicts the fact that g was

the optimal cost rate.

Q.E.D.
Lemma 4:
C(uk) c(u))
Let ¢ = 5 = min ra =12, ..., L and ¢ <A . Then
k a Ma
(609) 8 > X(c - A) .
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Proof:

This is also intuitively clear since the right side of (4.9) is the
negative of maximum return when the cheapest rate is used and all arriving
customers are served. Let Bi be as defined in Lemma 3, then {f

(rl,tz, C ool rN) is tlie set of optimal rates

g g c(ry)
g = B,e(r,) - Ax(1 -BJ)A- ) r,B, —— - A(1 - B,)A
N
2c 121 8, - A1 - BA = A(L - B)(c - A) > Alc - A) .

The last inequality follows from the fact that

BN >0.
Q.E.D.
Lemma 5:
cu,) C(ua)l
Let c¢c = = min »a=1,2, ..., L, and c <A then
Yk a Ha ’

all rates uJ such that uJ < b, can be eliminated from further consideration.
Proof:

This lemma is a generalization of Lemma 2, Chapter III.

Let us assume for simplicity that k = 2 . We must show ¥y will not

be used in the optimal policy.

Consider the same system with the same service rates available but a

different cost function as follows:

C(uz)
c'(ul) = cruy vhere ¢ = -—;—— . c(ul) > couy
c'(ui) - c(ui) i=2,...,1L




(see Figure 3).

We

e — o — o — s e

FIGURE 3

Function H : ABCX , the cost function for
the original problem, c(¢) .

Function H': OBCX , the cost function for
the new problem, c'(¢) .

first show that will not be used in the optimal policy for the

¥

new problem. The proof of the lemma then follows from Lemma 3., In order

for W, to be optimal in a state i in the new problem we must have
c(uy) - eny
h(1) -h(i - 1) <———-A=c -A.
H2 7
By Lemma 4
(4.10) g = A[h(1) - h(0)] > A(c - A)

47
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rhien
h(1) - h(0) =B > c-a.
*
lherefore, f (1) # 1 . Now consider two cases:

(ase 1:

f*(l) = 2 . then

g8 = c(uy) - uA + A[h(2) - h(1)] - u,[h(1) - W(O)] .

by (4.10)

g < C(uz) - WA+ A(h(2) - h(1)]) - uz(c - A)

aud

A(c - A) < c(uz) ~ At A[(h(2) - h(1)] - uz(c - A)

A(h(2) - h(1)] > A(c - A) + u2(c - A) - cu, + uzA

h(2) - h(1) > c - A .

*
iherefore, f (2) > 2.

Now, let £ (2) =t where t > 2 . For state 2 we have
g~ cl) - uA+2A[h3) - h(@2)] - u [h(2) - h(D)]
<e) - uA+2[h3) - k(D)) - WeRe o
Then by (4.10)

A(c - A) < c(ut) - u A4 A[h(3) - h(2)] - u R,




or

(4.11) A[h(3) - h(2)] > A(c - A) + uth - c(ut) + utA .

But

U

MRy = elug) * ek = o -tut-IIC(ut) - e(u_] - elu)

1
= =, _,eu) - w cl ;)] 20
Mg “Heg 177t t el

since for t = 2
ulocouz = uzncnul =0

and for t > 2

(H' being convex and passing through origin, see Figure 3.) Hence, (4.11)

reduces to
*
h(3) ~h(2) >c-A or £ (3) >2.
Continuing in the same manner we can show
*
£ (1) >2 for 1 =34, ..., N.

Case 2:

*
f (1) =t where t > 2 . Then h(l)-h(0)>Rt>c-A

g = A[h(1) - h(0)] > AR, .




Su

rer state ]

g = clu,) - A ¢ A(L(2) - h(D)y - utlh(l) - h(0))

‘ and

then

g <clu) -uA+2r(h(2) - h(1)) - u R, .

AR < c(ut) - A A(h(2) - h(1)]) - MR,

A(h(2) - h(1)) > ARt + uth - c(ut) + utA .

ut

* uth - c(ut) + utA >0 for t > 2

is was shown in Case 1. Hence,

h(2) - h(1) > Rt or f*(Z) 3t .

Ihis completes the proof of the lemma for the new problem, but by Lemma 4

the same will be true for the original problem.

By this lemma we can now assume that H passes through origin and

# clu,) ) cu,) ) . cu)
P e e

*
Continuing in the same way it can be shown f (1) >t for {1 = 3,4, ..., N .

Q.E.D.
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Theorem 1:

< JHLG K be L service rates such that

Let u) <y ML

%
R2 < R3 < 4. < RL , where Rj's are as defined in (4.6). Then £ (1) is

a nondecreasing function of 1 , i.e.,

* * *
£ (1) <£(2) <... <f(N)
which is a generalization of switchover policy.

Proof:

* *
We show that if f (1) =t then f (J) >t for all j >1 . We

consider two cases:

Case 1:

*
If £ (1) =t then by Lemma 5, Cases 1 and 2,
*
£ (1) >t for all 1 >1.

Case 2:

* *
Now let 1 be the smallest state such that f () > f (1) , N>1>1.
* *
Assume that f (i) =k and £ (1 - 1) = t where t <k . For state { -1

and 1 we have

c(u. ) - c(u, ;) c(u,,q) = clu)
R, = — t-l A <h(l-1) - h(i - 2) < —LH A= R
He 7 Ve T Verl T M bes
c(p,) - clu, ) ey, .,) - c(u)
k k-1 k+1 k
- - A <h{l) -h(1 -1) < - A=
L e T Mkl L S R ¥ !
g - C(ut) - utA + A[h(1) - h(1 - 1)) - l-t[h(i - 1) - h(1 - 2)]}

() = WA+ Al + 1) - h(D)] - u (b)) - h(t - D] .
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Rk 3_Rt+1 > Rt k>¢t+ }
then
g >c(u) -uA+ R - uR
g <clu) -uwA+alh(1+1) - h(d)] - wR
or

cy) - wA+ [k +1) - h(1)] - wR > C(ut) - u A+ 2R - u R
(4.12) A[h(1i 4+ 1) - h(1)] > -c(uk) + c(ut) + ukA - utA + XRk + (uk - ut)Rk 5

But

C(Dk) - C(Uk_l) _ C(Uk) - C(Ut)

(e = IR = leCu) = clu)] + (u - u)dA = TR TR

the last inequality holds by Lemmas 1 and 5. Then, (4.12) reduces to
h(1 + 1) - h(1) > Rk
or
®
f(1+1)>k. .

®
Continuing in the same manner we can show f (j) >k for j =41 +1,
i+2, ..., N, which completes the proof of Theorem 1.

c(u.)

Now consider that A < for all a , then Lemma 3 will still hold,

a
and the equivalent of Lemma 4 is Lemma 6.

Lemma 6:

Let ¢ =

= min
Yk a
g <A(c - A) .

c(u,) e(u)
" ,a=1,2, ..., L and ¢ > A then
k

> 0




F/

Proof:
Let B1 be the stationary probability corresponding to using My in
all states then
()
u
B, = k for 1 <N
i A A N -
T g .+ (——)
llk \lk
81 =0 for 1 > N
and let G 'be the corresponding average cost rate then
g <G =21 -8)(c-A<ilc-A
since BN > 0.
Q-F.

The following lemma is the equivalent of Lemma 5 for the
C(u‘)
A< for all a .
Ya
Lemma 7:
c(uk) c(u.)
Let ¢ = = min (~——? and c¢ > A then all rates
uk a ua

uk(uj > uk) can be eliminated from further conliderntion.

Proof:

This lemma is intuitively clear since all rates faster
more expensive and their use will increase the rate of number
served.

The proof closely follows the method to prove Lemma 5.

a nev problem with the cost of rates faster than M reduced

case

faster than

than uk are

of customers

to c*u and

b

53

First we consider
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show for this problem the optimal policy does not use rates uJ ” uj > My

and then by Lemma 3 complete the proof. Details are omitted here.

Theorem 2:

Let My < My < oo < Hp be L service rates such that all nonoptimal
*
rates are eliminated and RZ < R3 < % | € RL then f (1) 1is nonincreasing

function of 1 , 1.e.,

£°1) > £7(2) > 0. > £ (M) .

Proof:

* *
It will be shown that 1f f (i) =t , then f (j) <t for all j > 1 .
Details are omitted here since method of proof is closely related to the proof

of Theorem 1 of this chapter and Theorem 2 of the last chapter.
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